If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x-6.9=0
a = 3; b = 23; c = -6.9;
Δ = b2-4ac
Δ = 232-4·3·(-6.9)
Δ = 611.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{611.8}}{2*3}=\frac{-23-\sqrt{611.8}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{611.8}}{2*3}=\frac{-23+\sqrt{611.8}}{6} $
| 7−3+r=17 | | x−6/5+6/5=−x/8 | | (3,4)m=2.5 | | 2/8p-3=-5 | | x−/65+6/5=−x/8 | | 6+3-x÷2=1 | | 5z-8+3z=80 | | 2x+45=3x-33 | | 5z-8+3z=8- | | 4i(8-7i)=0 | | 2m+3(m+4)=37 | | X-9=16x-6 | | X+4=5+2x-x^2 | | -6x+7-4(x-1)=-(5x-4)-4x+4 | | 5x+9-x=45 | | 6.66/4=x/6 | | 4/6=x/10 | | 15x+4=2x+9 | | 5d=75×310 | | 10/1.66=6/x | | 1.66/10=6/x | | 50-3y=26 | | 1.66/10=x/6 | | 1.66/1=x/10 | | 4(x-2)+20=3(×+5) | | 4/3u-6=7/3+8 | | 10/5=x/6 | | (X/7)-(x/3)=4 | | 7x-(4x-3)=21 | | X/7-x/3=4 | | 9(2x-3)=7(x-3)+7 | | 0.07(5t+2)=0.35(t+4)-1.26 |